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Abstract Poroelasticity theory has become an effective and accurate approach to analyzing the intricate mechan-
ical behavior of a porous medium containing two immiscible fluids, a system encountered in many subsurface
engineering applications. However, the resulting partial differential equations in the theory intrinsically take on a
coupled form in the terms pertinent to inertial drag, viscous damping, and applied stress, making it difficult to obtain
closed-form, steady-state analytical solutions to boundary-value problems except in special cases. In the present
paper, we demonstrate that, for dilatational wave excitations, these partial differential equations can be decoupled
analytically into three Helmholtz equations featuring complex-valued, frequency-dependent normal coordinates
that correspond physically to three independent modes of dilatational wave motion. The normal coordinates in
turn can be expressed in the frequency domain as three different linear combinations of the solid dilatation and
the linearized increment of fluid content for each pore fluid, or equivalently, as three different linear combinations
of total dilatational stress and two pore fluid pressures. These representations are applicable to strain-controlled
and stress-prescribed boundary conditions, respectively. Numerical calculations confirm that the phase speed and
attenuation coefficient of the three dilatational waves represented by the Helmholtz equations are exactly identical
to those obtained previously by numerical solution of the dispersion relations for dilatational wave excitation of
a porous medium containing two immiscible fluids. Thus, dilatational wave motions in unsaturated porous media
subject to suitable boundary conditions can now be accurately modeled analytically.

Keywords Decoupling · Dilatational wave motions · Poroelasticity

1 Introduction

Strong coupling between applied stress and pore fluid pressure, termed poroelasticity [1], has long been noted in
a wide range of phenomena encountered in hydrogeology, geomechanics, and reservoir engineering. Groundwater
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withdrawal or hydrocarbon extraction can deform the solid matrix in a subsurface reservoir to trigger land subsidence
[2–4]. The converse is true: deformation of porous media can cause pore volume changes that create additional pore
pressure gradients, not only enhancing subsurface fluid flow [5, 6], but also altering surface stream discharge [7].
There is now a broad consensus that many hydrogeological and reservoir engineering problems can be understood
well only if hydromechanical coupling between the solid skeleton and the interstitial fluids is taken into account
[8–13].

A mathematical description of poroelasticity was first proposed by Biot [14] for the study of the consolidation
problem in a homogeneous, isotropic, elastic porous medium permeated by a single compressible viscous fluid.
A more general theoretical treatment of elastic-wave propagation and attenuation through a fluid-saturated porous
medium was then developed in a famous series of papers by Biot [15, 16]. One fundamental feature of this theory
is the prediction that a shear (rotational) wave together with two compressional (dilatational) waves exist in a
poroelastic medium bearing a single fluid, as opposed to the existence of only a single compressional wave and a
shear wave in a nonporous solid. The dilatational wave with the larger phase velocity, known as the Biot fast wave,
propagates in a motional mode wherein the displacements of the solid and the fluid are always in phase, whereas
the other dilatational wave, known as the Biot slow wave, is excited when the solid skeleton moves out of phase
with the interstitial fluid [1, 15, 16].

When two immiscible pore fluids are present, the theoretical representation is more intricate because the fluids
respond to both a pressure discontinuity (capillary pressure) and an acceleration difference (inertial coupling), nei-
ther of which is possible in a single-fluid system [17, Chaps. 6–8]. (A third response, to viscous coupling between
two immiscible fluids caused by the difference in their velocities, is commonly ignored in models of two-phase
flow through unsaturated porous media [18, Chap. 5].) Capillary pressure effects have been represented in most
elastic-wave models based on either a Lagrangian [19, 20] or an Eulerian perspective [21–23], but inertial coupling
has been typically ignored. The effect of inertial coupling was systematically evaluated by Berryman et al. [24],
who neglected changes in capillary pressure, however, under the assumption that the excitation wavelength is suf-
ficiently long to leave the pressure difference between two immiscible pore fluids effectively constant. Under this
assumption, two coupled partial differential equations formally similar to the Biot [16] model equations can be
derived and solved analytically, but with more complicated inertial and elasticity coefficients due to the presence
of the second fluid [24].

Santos et al. [25], employing a Lagrangian variational principle, appear to have been the first to consider the joint
influence of changes in capillary pressure and inertial coupling on poroelastic behavior. Recently, incorporation of
these two phenomena into an Eulerian framework has been accomplished by Lo et al. [13] based on the continuum
theory of mixtures. In both studies, the existence of three different compressional modes was demonstrated, desig-
nated conventionally as the P1, P2, and P3 waves in order of decreasing speed. The P1 and P2 waves are analogous to
the fast and slow compressional waves in Biot theory. The P3 wave is associated with capillary pressure fluctuations,
and has the highest attenuation coefficient with the lowest phase velocity [13, 22, 25].

Poroelasticity models feature partial differential equations that are coupled through physical terms describing
inertial coupling, viscous damping, and applied stresses. A choice of normal coordinates for dilatational motions
that allows exact separation of the coupled equations into three partial differential equations representing indepen-
dent modes is highly desirable, particularly if each resulting equation is analytically solvable. For a porous medium
containing a single fluid, exact decoupling of the Biot [16] model equations for dilatational motions can be achieved
in the frequency domain [26, 27] using two complex-valued, frequency-dependent normal coordinates, each of
which satisfies a Helmholtz equation (Table 1). In the time domain, Chandler and Johnson [28] demonstrated that,
when inertial coupling terms are neglected in the Biot model, exact decoupling can be achieved with two real-valued
normal coordinates that satisfy a diffusion equation and a Laplace equation, respectively. If the inertial coupling
terms in the Biot model equations are retained, decoupling into the Chandler–Johnson normal coordinates is still
possible, but requires a constraint relationship between elasticity coefficients and inertial coupling parameters [29].
However, an alternative condition has been found that does not require neglect of inertial coupling. Whenever the
wave excitation frequency is much smaller than a critical frequency, defined by the ratio of the kinematic viscosity
of the pore fluid to the permeability of the porous medium, the Biot model equations can be decoupled in the time
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Table 1 Decoupled poroelasticity models

Fourier domain One-fluid system Two-fluid system

Capillary pressure
changes neglected

Capillary pressure
changes included

Models with inertial coupling
Frequency Dutta and Ode [26]; Berryman [27] Berryman et al. [24] Present study
Time (Low frequency limit) Lo et al. [30] Lo et al. [32] Not available

One-fluid system Two-fluid system

Models without inertial coupling
Time Chandler and Johnson [28] Lo [31]

domain, yielding a propagating-wave equation for the Biot fast wave and a dissipative wave equation for the Biot
slow wave [30].

Decoupling of the Lo et al. [13] poroelasticity equations for dilatational waves in a porous medium containing
two immiscible fluids also can be accomplished in the time domain if inertial coupling terms are dropped [31].
Berryman et al. [24] decoupled their model equations, which neglect capillary pressure changes but retain inertial
coupling terms, following the frequency-domain method used by Berryman [27] for the single-fluid case (Table 1).
In a generalization of the result for a single-fluid system [13], conversion of the decoupled frequency-domain
equations of Berryman et al. [24] for dilatational waves into the time domain can be accomplished [32] if the wave
excitation frequency is well below a critical frequency, equal to the ratio of an effective kinematic shear viscosity
for the two interstitial fluids [24] to the intrinsic permeability of the porous medium (Table 1).

Since the Berryman et al. [24] model neglects changes in capillary pressure, only two decoupled frequency-
domain equations are found. However, it has long been known that three modes of dilatational wave motion must
exist in unsaturated porous media [13, 19, 21–23, 25]. Thus, a complete set of three decoupled Helmholtz equations
is expected but heretofore has not been available. In the present paper, we derive these three decoupled Helmholtz
equations. The dependent variables (normal coordinates) are three different linear combinations of the dilatation of
the solid and the linearized increment of fluid content for each pore fluid [24], as developed in the dilatational wave
model of Lo et al. [13] for unsaturated poroelastic media, which accounts for the effects of both changes in capillary
pressure and inertial coupling. Based on linear stress–strain relationships among the solid and two fluid phases, the
dependent variables can be converted into three different linear combinations of total dilatational stress and the two
pore fluid pressures, corresponding to a stress-controlled scenario. A numerical study is then performed to show
that our Helmholtz equations indeed yield the same phase velocities and attenuation coefficients for the dilatational
waves as can be determined directly from conventional numerical solution of the dispersion relation for the coupled
model equations. When specialized to a fully saturated elastic porous medium, our Helmholtz equations reduce to
the two decoupled frequency-domain equations derived previously for the Biot poroelastic model [26, 27].

2 Poroelasticity model equations

Coupled partial differential equations describing dilatational wave propagation and attenuation through an elastic
porous medium containing two immiscible, viscous, compressible fluids, allowing for changes in capillary pressure
and inertial coupling, were developed by Lo et al. [13] in an Eulerian framework:
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ρ1θ1
∂2ε1

∂t2 − A11

(
∂2ε1

∂t2 − ∂2e

∂t2

)
− A12

(
∂2ε2

∂t2 − ∂2e

∂t2

)
− R11

(
∂ε1

∂t
− ∂e

∂t

)
= a21∇2e + a22∇2ε1 + a23∇2ε2,

(1.2)
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(1.3)

where ρα denotes the material density of phase α, the subscript α designating three immiscible phases: the solid, the
nonwetting fluid (α = 1; fluid 1), and the wetting fluid (α = 2; fluid 2); θα signifies the volumetric fraction of phase
α; e represents the volumetric strain (dilatation) of the solid phase; εξ represents the volumetric strain (dilatation)
of fluid phase ξ (ξ = 1, 2); R11 and R22 are the constitutive coefficients associated with viscous coupling between
the solid and fluid phases; A11 and A22 are the constitutive coefficients pertinent to inertial coupling between the
fluid and solid phases, while A12 and A21 are those concerning inertial coupling between the fluid phase and the
adjacent fluid phase; G expresses the shear modulus of the porous framework; and ai j (i , j = 1, 2, 3) are elasticity
coefficients, and their cross terms are symmetric, i.e., ai j = a ji . The physical interpretation of the coefficients R11,
R22, A11, A22, A12, A21, and ai j is detailed in Lo et al. [13] and the representation of these coefficients in terms of
directly-measurable parameters is given here in Appendix A.

By adding the equations of (1), one can obtain an equation that reflects dynamic equilibrium of the total stress
for the entire three-phase system:

ρsθs
∂2e

∂t2 + ρ1θ1
∂2ε1

∂t2 + ρ2θ2
∂2ε2

∂t2 =(̃a11 + a21 + a31)∇2e + (a12 + a22 + a32)∇2ε1 + (a13 + a23 + a33)∇2ε2,

(2)

where ã11 = a11 + 4
3 G. We note that, according to the theory of poroelasticity, an elastic porous medium under-

goes very small deformations in a reversible thermodynamic process, so all physical parameters ρα , θα , ai j , A11,
A12, A21, A22, R11, and R22 in (1.2), (1.3), and (2) are evaluated in a reference configuration, taken here as the
unperturbed state before stress is applied [13, 16, 22, 24, 25, 33, 34].

3 Decoupling the model equations

The Biot model equations for dilatational wave motions in a porous medium containing a single fluid can be decou-
pled exactly after Fourier time-transformation of the dilatation of the solid and the linearized increment of fluid
content into the frequency domain [26, 27]. The same dependent variables and Fourier transformation approach
were used by Berryman et al. [24] to decouple their model equations for an elastic porous medium containing two
fluids under the assumption of negligible capillary pressure change. Similarly, we employ the linearized increment
of fluid content for each pore fluid, ζξ = θξ (εξ − e) (ξ = 1, 2) defined by Berryman et al. [24], as the dependent
variable instead of εξ in equations (1.2), (1.3), and (2):
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(ρsθs + ρ1θ1 + ρ2θ2)
∂2e
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(3.3)

where aT = ã11 + a22 + a33 + 2(a12 + a13 + a23). Definition of

χξ ≡ − Rξξ

θ2
ξ
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θ2
ξ

, (ξ = 1, 2) (4.2)
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, (4.3)

ρ ≡
∑

ραθα, (4.4)

enables us to express the equations (3) as:
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The elasticity coefficients Di j defined in (5) are given by

D11 = aT , D12 = (a12 + a22 + a23)

θ1
, D13 = (a13 + a23 + a33)

θ2
, (6.1, 2, 3)
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2

. (6.4, 5, 6)

The parameters χξ , ρξs , and ρ12 in (4.1)–(4.3) can be written in a more tractable way by substituting (A4) and (A5),
respectively:

χξ = ηξ

kskrξ

, (ξ = 1, 2) (7.1)

ρξs = αsρξ

θξ

, (ξ = 1, 2) (7.2)

ρ12 = −0.1

√
α2

s ρ1ρ2

θ1θ2
, (7.3)

where χξ and ρξs are analogous to the coefficients b and m defined by Biot [16] to represent viscous and inertial
coupling, respectively, in a single-fluid system. In (7), ηξ is the dynamic shear viscosity of fluid phase ξ ; ks is the
intrinsic permeability of the porous medium; krξ is the relative permeability of fluid phase ξ ; and αs is the tortuosity
of the porous medium.

After Fourier time-transformation [ f (�x, t) ≡ 1√
2π

∫ ∞
−∞ f̃ (�x, ω) exp(−iωt)dω], we can then recast the equations
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where q1 = ρ1s + i
ω
χ1 and q2 = ρ2s + i

ω
χ2. Next, inverting the first matrix in (8), we have⎧⎨

⎩∇2 + ω2

�
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⎣D22 D33 − D2
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(9)

where � = D11 D22 D33 + 2D12 D13 D23 − D2
13 D22 − D11 D2

23 − D2
12 D33. Equation (9) can be compactly arranged

into matrix form:

(δ∇2 + B)

⎡
⎣ ẽ

ζ̃1

ζ̃2

⎤
⎦ = 0, (10)

where δ is the unit tensor (δi j = 0 for i �= j , δi j = 1 for i = j) and B =
⎡
⎣ B11 B12 B13

B21 B22 B23

B31 B32 B33

⎤
⎦ with its matrix

elements being:

B11 = ω2[(D22 D33 − D2
23)ρ + (D13 D23 − D12 D33)ρ1 + (D12 D23 − D13 D22)ρ2]/�, (11.1)

B12 = ω2[(D22 D33 − D2
23)ρ1 + (D13 D23 − D12 D33)q1 − (D12 D23 − D13 D22)ρ12]/�, (11.2)

B13 = ω2[(D22 D33 − D2
23)ρ2 − (D13 D23 − D12 D33)ρ12 + (D12 D23 − D13 D22)q2]/�, (11.3)

B21 = ω2[(D13 D23 − D12 D33)ρ + (D11 D33 − D2
13)ρ1 + (D12 D13 − D11 D23)ρ2]/�, (11.4)

B22 = ω2[(D13 D23 − D12 D33)ρ1 + (D11 D33 − D2
13)q1 − (D12 D13 − D11 D23)ρ12]/�, (11.5)

B23 = ω2[(D13 D23 − D12 D33)ρ2 − (D11 D33 − D2
13)ρ12 + (D12 D13 − D11 D23)q2]/�, (11.6)

B31 = ω2[(D12 D23 − D13 D22)ρ + (D12 D13 − D11 D23)ρ1 + (D11 D22 − D2
12)ρ2]/�, (11.7)

B32 = ω2[(D12 D23 − D13 D22)ρ1 + (D12 D13 − D11 D23)q1 − (D11 D22 − D2
12)ρ12]]/�, (11.8)

B33 = ω2[(D12 D23 − D13 D22)ρ2 − (D12 D13 − D11 D23)ρ12 + (D11 D22 − D2
12)q2]/�. (11.9)

Decoupling of the equations (10) corresponds to solving an eigenvalue problem for the matrix of B. The resulting
decoupled equations are of the form:

[∇2 + λ j (ω)]� j (�x, ω) = 0, (12)

where � j (�x, ω) = � j ẽ + ζ̃1 +� j ζ̃2 ( j = 1, 2, 3) is an eigenvector and λ j (ω) is the corresponding eigenvalue that
satisfies the cubic polynomial equation:

λ3
j − (B11 + B22 + B33)λ

2
j − (B13 B31 + B23 B32 + B12 B21 − B11 B33 − B22 B33 − B11 B22)λ j

+ (B13 B22 B31 + B11 B23 B32 + B12 B21 B33 − B11 B22 B33 − B12 B23 B31 − B13 B21 B32) = 0, (13)

subject to three well-known constraints resulting from scalar invariance under similarity transformations:

λ1 + λ2 + λ3 = (B11 + B22 + B33), (14.1)

λ1λ2 + λ1λ3 + λ2λ3 = −(B13 B31 + B23 B32 + B12 B21 − B11 B33 − B22 B33 − B11 B22), (14.2)

λ1λ2λ3 = −(B13 B22 B31 + B11 B23 B32 + B12 B21 B33 − B11 B22 B33 − B12 B23 B31 − B13 B21 B32). (14.3)
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The parameters � j and � j are related to the eigenvalue λ j (ω) by

λ j (ω) = B11 + B21

� j
+ � j

� j
B31 = � j B12 + B22 + � j B32 = � j

� j
B13 + B23

� j
+ B33. (15)

Equation (15) can be solved to yield

� j = (λ j B31 + B21 B32 − B22 B31)

(λ j B32 + B12 B31 − B11 B32)
, � j = (λ j B13 + B12 B23 − B13 B22)

(λ j B12 + B13 B32 − B12 B33)
. (16.1, 2)

Physically,
√

λ j = k j = kr
j + iki

j ( j = 1, 2, 3) represents a complex wavenumber that includes attenuation,

where kr
j = Re(k j ) expresses the conventional wavenumber and ki

j = Im(k j ) denotes the attenuation coefficient

[13]. Accordingly, the phase speed V j can be determined through the standard relation: V j = ω
kr

j
. The amplitude of

dilatational waves decays with distance; in turn, this requires ki
j > 0 mathematically. Therefore, the resulting Helm-

holtz equations (12) provide three dilatational wave solutions. If the dilatational waves are steady-state, harmonic,
and travel along the z-direction (plane waves), the solution to (12) must take the general form:

�1(z, ω) = β1 exp i(
√

λ1z − ωt), �2(z, ω) = β2 exp i(
√

λ2z − ωt), �3(z, ω) = β3 exp i(
√

λ3z − ωt),

(17.1, 2, 3)

where β1, β2, and β3 are wave amplitudes to be determined from the boundary conditions; λ1, λ2, and λ3 are
obtained by solving (13) and Re(

√
λ1) < Re(

√
λ2) < Re(

√
λ3) is defined. As a result, the analytical solutions for

the dilatation of the solid and the linearized increment of fluid content of fluid phase ξ in the frequency domain is
found to be:

ẽ = [(�3 − �2)�1 + (�1 − �3)�2 + (�2 − �1)�3]/�, (18.1)

ζ̃1 = [(�3�2 − �2�3)�1 + (�1�3 − �3�1)�2 + (�2�1 − �1�2)�3]/�, (18.2)

ζ̃2 = [(�2 − �3)�1 + (�3 − �1)�2 + (�1 − �2)�3]/�, (18.3)

where � = �1�3 +�2�1 +�3�2 −�3�1 −�1�2 −�2�3. The values of the parameters � j and � j corresponding
to each eigenvalue λ j are calculated from (16). The Helmholtz equations (12) that result from decoupling (1.2),
(1.3), and (2) can be applied to model analytically the behavior of dilatational waves in unsaturated porous media
under a variety of boundary conditions. Lastly, we note in passing that an alternative approach to ours for solving
the Helmholtz equations (12) involves the methods of matrix differential calculus [35].

4 Numerical verification

To verify that the Helmholtz equations (12) correctly represent the independent motional modes of three dilata-
tional waves, a numerical calculation was conducted to determine their phase speeds and attenuation coefficients
in Columbia fine sandy loam containing either an oil–water or an air–water mixture, two illustrative examples
previously studied by Lo et al. [13]. The well-known van Genuchten [36]–Mualem [37] model was applied to
represent the capillary pressure—fluid saturation and relative permeability—fluid saturation relationships required
for computation of the coefficients ai j and χξ . The elasticity and hydraulic data, together with the fitting parameters
in the van Genuchten–Mualem model necessary for numerical simulation, were taken from Lo et al. [13]. The cubic
polynomial equation (13) was numerically solved in MATLAB to determine the eigenvalues λi . Figures 1–6 show
the phase speeds and attenuation coefficients of the three dilatational waves in both fluid mixtures as functions
of excitation frsequency and water saturation. Comparison of Figs. 1–6 with the results in [13] demonstrates that
the phase speeds of the three dilatational waves determined from the Helmholtz equations (12) are entirely con-
sistent with those predicted from conventional numerical solution of the dispersion relation for the coupled model
equations (1) reported in [13]. This consistency also holds true for the attenuation coefficients, confirming that the
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Fig. 1 The phase speed and attenuation coefficient of the P1 wave as a function of excitation frequency and water saturation in an
air–water system
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Fig. 2 The phase speed and attenuation coefficient of the P2 wave as a function of excitation frequency and water saturation in an
air–water system

Helmholtz equations (12) indeed provide an accurate description of three uncoupled motional modes of dilatational
wave motions in an unsaturated porous medium. The maximum relative difference obtained for the phase speeds
and attenuation coefficients that were computed from these two solutions was found to be less than 10−6%. A com-
prehensive discussion of the important physical parameters controlling the phase speeds and attenuation coefficients
of these waves was given by Lo et al. [13].

5 Alternative normal coordinates

The boundary conditions for poroelasticity problems encountered in hydrogeology [9, Chaps. 6–9], and soil
dynamics [38, Chaps. 3–4], are commonly specified in terms of applied stress instead of induced strain. Evi-
dently the primary dependent variables in (12) are expressed in terms of the displacement components (dilatations)
of the solid and fluids. If a boundary-value problem involving (12) is established under stress boundary conditions,
these dependent variables must be converted into linear combinations of the applied stress.
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Fig. 3 The phase speed and attenuation coefficient of the P3 wave as a function of excitation frequency and water saturation in an
air–water system
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Fig. 4 The phase speed and attenuation coefficient of the P1 wave as a function of excitation frequency and water saturation in an
oil–water system

According to the conventional definition of the total stress of the bulk porous material [16], the total stress σ

placed on a porous medium containing a single fluid is borne in part by the stress applied to the solid, t s , and in part
by the force per unit area acting on the fluid, −φp f , where p f represents the (gauge) pore fluid pressure [16]:

σ = t s − φp f δ. (19)

Using a variational principle, Biot [15, 16] developed linear stress–strain relationships for an elastic porous medium
bearing a single compressible fluid based on the strain energy function. Lo et al. [13] generalized the Biot [15]
linear stress–strain relationships to apply to a two-fluid system:

t s = 2Ge +
[
(a11 − 2

3
G)e + a12ε1 + a13ε2

]
δ, (20.1)

− θ1 p1 = a12e + a22ε1 + a23ε2, −θ2 p2 = a13e + a23ε1 + a33ε2, (20.2, 3)
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Fig. 5 The phase speed and attenuation coefficient of the P2 wave as a function of excitation frequency and water saturation in an
oil–water system
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Fig. 6 The phase speed and attenuation coefficient of the P3 wave as a function of excitation frequency and water saturation in an
oil–water system

where pξ (ξ = 1, 2) refers to the (gauge) pressure in each fluid; e = 1
2 ( �∇�us + �∇�uT

s ) signifies the solid strain tensor,
the superscript T representing its transpose; and �us denotes the displacement vector of the solid phase.

In a two-fluid system, each fluid typically experiences a different pore pressure, so the fluid pressure p f defined
in (19) is generalized by considering it as an average pressure in a mixture comprising the non-wetting fluid and
the wetting fluid [13, 22]. This is also a common approach used to define the effective stress of an elastic porous
medium saturated by two immiscible fluids [39], [40, Sect. 2.5.2]. Employing the technique of volume-averaging,
Whitaker [41] showed that the average fluid pressure in such a porous medium is the weighted sum of the pressures
in the nonwetting and wetting fluids:

p f = S1 p1 + (1 − S1)p2. (21)

Incorporation of (21) into (19) yields

σ = t s − φ[S1 p1 + (1 − S1)p2]δ = t s − (θ1 p1 + θ2 p2)δ. (22)
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The diagonal component of the total stress tensor is the total dilatational stress σkk [28]:

σkk = t xx
s − (θ1 p1 + θ2 p2) + t yy

s − (θ1 p1 + θ2 p2) + t zz
s − (θ1 p1 + θ2 p2), (23)

where t ii
s is a Cartesian element of t s . By use of the linear stress–strain relationships formulated in (20) to replace

the stress terms on the right side of (23), one can obtain

σkk = 3(a11 + a12 + a13)e + 3(a12 + a22 + a23)ε1 + 3(a13 + a23 + a33)ε2. (24)

In view of (20.2), (20.3), and (24), the dilatations of the solid and two fluid phases can be written in terms of p1,
p2, and σkk :

e = C11σkk + C12(−θ1 p1) + C13(−θ2 p2), ε1 = C21σkk + C22(−θ1 p1) + C23(−θ2 p2),

ε2 = C31σkk + C32(−θ1 p1) + C33(−θ2 p2), (25.1, 2, 3)

where the elements of the matrix Ci j are given by

C11 = (a22a33 − a2
23)/�, (26.1)

C12 = [3(a13 + a23 + a33)a23 − 3(a12 + a22 + a23)a33]/�, (26.2)

C13 = [3(a12 + a22 + a23)a23 − 3(a13 + a23 + a33)a22]/�, (26.3)

C21 = (a13a23 − a12a33)/�, (26.4)

C22 = [3(a11 + a12 + a13)a33 − 3(a13 + a23 + a33)a13]/�, (26.5)

C23 = [3(a13 + a23 + a33)a12 − 3(a11 + a12 + a13)a23]/�, (26.6)

C31 = (a12a23 − a13a22)/�, (26.7)

C32 = [3(a12 + a22 + a23)a13 − 3(a11 + a12 + a13)a23]/�, (26.8)

C33 = [3(a11 + a12 + a13)a22 − 3(a12 + a22 + a23)a12]/�, (26.9)

� = 3(a11 + a12 + a13)a22a33 + 3(a12 + a22 + a23)a13a23 + 3(a13 + a23 + a33)a12a23

− 3(a11 + a12 + a13)a
2
23 − 3(a12 + a22 + a23)a12a33 − 3(a13 + a23 + a33)a22a13. (26.10)

It follows from (25) that the linearized increment of fluid content for each pore fluid can be expressed using total
dilatational stress and two pore fluid pressures:

ζ1 = θ1(C21 − C11)σkk + θ2
1 (C12 − C22)p1 + θ1θ2(C13 − C23)p2, (27.1)

ζ2 = θ2(C31 − C11)σkk + θ1θ2(C12 − C32)p1 + θ2
2 (C13 − C33)p2. (27.2)

Thus, after inserting equations (25.1) and (27) into the Helmholtz equations (12) and taking Fourier transformations,
we derive equivalent Helmholtz equations under a stress scenario:

[∇2 + λ j (ω)]{[� j C11 + θ1(C21 − C11) + � jθ2(C31 − C11)]̃σkk + [−� jθ1C12 + θ2
1 (C12 − C22)

+� jθ1θ2(C12 − C32)] p̃1 + [−� jθ2C13 + θ1θ2(C13 − C23) + � jθ
2
2 (C13 − C33)] p̃2} = 0. (28)
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6 Reduction to the decoupled Biot model equations

Dutta and Ode [26] and Berryman [27] have shown that the Biot model equations can be decoupled into two
Helmholtz equations whose normal coordinates are complex-valued, frequency-dependent variables. These two
Helmholtz equations can be derived from our equations (12) as a special case.

When only one fluid is present in the pore space (i.e., S1 = 1, K1 = K f , and S2 = K2 = dS1
dpc

= 0), the param-

eters M1 and M2 in (A2.4) and (A2.5) become equal to −1 and
K f
φ

, respectively. The dimensionless parameters δs ,
δ1, and δ2 in (A2.1)–(A2.3) in turn reduce to:

δs =
(

1 − φ − Kb
Ks

)
φKs
K f(

1 − φ − Kb
Ks

+ φKs
K f

) , δ1 = −
(

1 − φ − Kb
Ks

)
φ(

1 − φ − Kb
Ks

+ φKs
K f

) , δ2 = 0. (29.1, 2, 3)

As a consequence, the elasticity coefficients ai j in (A1) can be simplified to

a11 = Ks (1 − φ − δs) =
(1 − φ)

(
1 − φ − Kb

Ks

)
Ks + φKb Ks

K f(
1 − φ − Kb

Ks
+ φKs

K f

) = P − 4

3
G, (30.1)

a12 = a21 = −Ksδ1 =
(

1 − φ − Kb
Ks

)
Ksφ(

1 − φ − Kb
Ks

+ φKs
K f

) = Q, (30.2)

a22 = (δ1 + φ)K f = φ2 Ks(
1 − φ − Kb

Ks
+ φKs

K f

) = R, (30.3)

a13 = a23 = a33 = 0, (30.4)

where P , Q, and R are the elasticity coefficients defined by Biot [15, 16]. Therefore, the elasticity coefficients Di j

in (6) for a single-fluid system can be written:

D11 = P + 2Q + R = H, D12 = (Q + R)

φ
= C, (31.1, 2)

D22 = R

φ2 = M, D13 = D23 = D33 = 0, (31.3, 4)

where H , C , and M are elasticity coefficients defined by Biot [16]. Accordingly, the elements of matrix B in (11)
become

B11 = ω2(ρM − ρ f C)�−1, B12 = ω2(ρ f M − qC)�−1, B21 = ω2(ρ f H − ρC)�−1, (32.1, 2, 3)

B22 = ω2(q H − ρ f C)�−1, B13 = B23 = B31 = B32 = B33 = 0, (32.4, 5)

where � and q are given by

� = M H − C2, q = αsρ f

φ
+ iη f

ωks
. (33.1, 2)

In (33.2), η f is the dynamic shear viscosity of the fluid phase. Because only one fluid exists in the pore space, we
have θ1 = φ and the relative permeability takes on unit value. Thus, the decoupled Helmholtz equations of the Biot
model of poroelasticity can be recovered from our equations (12) as:

[∇2 + λ±(ω)]�±(�x, ω) = 0, (34)

where the eigenvalues λ±(ω) and eigenvectors �±(�x, ω) are:
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λ±(ω) = 1

2
{(B11 + B22) ± [(B11 − B22)

2 + 4B12 B21] 1
2 }, (35.1)

�±(�x, ω) = �±ẽ − ζ̃ , (35.2)

subject to

�± = B21(λ± − B11)
−1 = (λ± − B22)B−1

12 = 1

2B12
{(B11 − B22) ± [(B11 − B22)

2 + 4B12 B21] 1
2 }. (36)

The parameter ζ̃ is the Fourier transform of the linearized increment of fluid content in a single-fluid system, defined
as ζ = φ(e − ε), where ε represents the dilatation of the fluid phase [16]. Equations (34)–(36) are identical to the
decoupled Biot [16] model equations obtained by Berryman [27] in the frequency domain. We have recently shown
[30] that, when the frequency of wave excitation is much smaller than a critical frequency equal to the kinematic
viscosity of the pore fluid divided by the permeability of the porous medium, a time-domain representation of the
equations of (34) can be derived which comprises a propagating wave equation and a dissipative wave equation
(or telegraph equation), respectively.

7 Conclusions

Poroelasticity is a continuum theory for studying the mechanical behavior of an elastic solid skeleton containing
interconnected fluid-saturated pores. When a fluid-filled porous medium is exerted by an applied stress, strong
time-dependent coupling occurs between the deformation of the porous material and the fluid flows within it. This
attribute leads to model equations describing poroelastic behavior that are in coupled form. Therefore, for the deter-
mination of closed-form analytical solutions of the poroelasticity equations under a variety of boundary conditions,
it is valuable to perform a normal coordinate transformation that can decouple these equations completely.

A mathematical model for the analysis of the dynamic poroelasticity problem of dilatational wave propagation
and attenuation through partially saturated porous media was presented by Lo et al. [13] based on continuum mixture
theory, which is general enough to account for three crucial physical interactions arising between immiscible pore
fluids: changes in capillary pressure, viscous coupling, and inertial coupling. In the current study, we show that
the poroelasticity equations derived in the Lo et al. [13] model can be decoupled into three Helmholtz equations
after Fourier transformation. These equations feature three complex-valued frequency-dependent normal coordi-
nates representing independent motional modes, each of which can be expressed in terms of three different linear
combinations of the solid dilatation and the linearized increment of each fluid content, or equivalently, three differ-
ent linear combinations of total dilatational stress and two pore fluid pressures. The choice of which formulation
to apply depends on the boundary conditions that are prescribed in engineering applications. As specialized to a
saturated porous medium, our Helmholtz equations recover the decoupled Biot [16] model equations as obtained
in the frequency domain [27].

Our studies thus have taken significant steps toward yielding a fully decoupled formulation of the poroelastic
equations for acoustic wave motions in both single-fluid and two-fluid systems. In future work, we expect to derive
a time-domain representation for the two-fluid system at low excitation frequencies with the effect of capillary
pressure changes taken into account. As indicated in Table 1, once this goal is realized, any poroelastic response of
a homogeneous porous medium permeated by two immiscible, viscous, compressible fluids to suitable boundary
conditions can be modeled analytically.
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Appendix A: Representation of the coefficients aij , R11, R22, A11, A22, A12, and A21

According to Lo et al. [13], the elasticity coefficients ai j can be expressed in terms of porosity φ and five directly
measurable elasticity moduli: the bulk modulus of the porous framework, Kb, the shear modulus of the porous
framework, G, and the bulk modulus of the α phase, Kα:

a11 = Ks(1 − φ − δs), a12 = a21 = −Ksδ1, a13 = a31 = −Ksδ2, (A1.1, 2, 3)

a22 = − 1

M1

[(
K1 K2

dS1

dpc
+ K1 K2S1

1 − S1

dS1

dpc
+ K1S1

)
δ1 + K1 K2S1φ

1 − S1

dS1

dpc
+ K1S1φ

]
, (A1.4)

a23 = a32 = −
(

δ1δ2

δs
Ks + K1 K2φ

M1

dS1

dpc

)
, (A1.5)

a33 = − 1

M1

{[
K1 K2

dS1

dpc
+ K1 K2(1 − S1)

S1

dS1

dpc
+ K2(1 − S1)

]
δ2 + K1 K2(1 − S1)φ

S1

dS1

dpc
+ K2(1 − S1)φ

}
,

(A1.6)

where Sξ represents the relative saturation of fluid phase ξ , associated with the volumetric fraction and porosity

by Sξ = θξ

φ
; pc = p1 − p2 denotes capillary pressure, a difference between the pressures of the non-wetting and

wetting fluids at equilibrium, pξ (ξ = 1, 2) referring to the (gauge) pressure in each fluid. Equations (A1) reveal that

the elasticity coefficients ai j are dependent on the slope, dS1
dpc

, of the curve depicting the relation between saturation

of the non-wetting fluid and capillary pressure. In the equations of (A1), the parameters δs , δ1, δ2, M1, and M2 are
given by

δs =
(

1 − φ − Kb
Ks

)
Ks

Ks + M2
M1

(
Kb
Ks

− 1 + φ
) , (A2.1)

δ1 =
K1

(
S1 + K2

dS1
d pc

+ K2 S1
1−S1

dS1
d pc

) (
1 − φ − Kb

Ks

)

Ks M1 + M2

(
Kb
Ks

− 1 + φ
) , δ2 =

K2

(
1 − S1 + K1

S1

dS1
d pc

) (
1 − φ − Kb

Ks

)

Ks M1 + M2

(
Kb
Ks

− 1 + φ
) , (A2.2, 3)

M1 = −
(

K1

S1

dS1

dpc
+ K2

1 − S1

dS1

dpc
+ 1

)
, M2 = K1 K2

φS1(1 − S1)

dS1

dpc
+ K1S1

φ
+ K2(1 − S1)

φ
, (A2.4, 5)

where δs , δ1, and δ2 are dimensionless parameters, and their linear combination with the dilatations of the solid
and two immiscible pore fluids can be used to express porosity change caused by a compressional wave travel-
ing through a fluid-filled porous medium: �φ = δse + δ1ε1 + δ2ε2, which is a physical quantity defined as the
difference in porosity between the current configuration and a reference configuration, the latter taken here as the
unperturbed state prior to wave excitation. The parameters M1 and M2 are effective non-wetting fluid storativity
factors in response to capillary pressure fluctuations [13]. In view of the generalized Biot–Willis [42] unjacketed
experiment for a two-fluid system [13, 22], the physical meaning of the parameter M1 can be better understood
from the relation [see Appendix B]:

pc = K1

M1

�∇ · �u1 − K2

M1

�∇ · �u2, (A3)

where �uξ refers to the displacement vector of fluid phase ξ . Thus, K1
M1

and K2
M1

can be, respectively, recognized as
the bulk modulus of the non-wetting and wetting fluids in response to changes in capillary pressure when porosity
change is held constant.
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In reference to the viscous coupling coefficients R11 and R22 under low-frequency wave excitation, fluid transport
through the pore space is of the Poiseuille type, so they can be modeled by the expressions [13, 22, 24, 25]:

R11 = − θ2
1 η1

kskr1
, R22 = − θ2

2 η2

kskr2
, (A4.1,2)

where ηξ is the dynamic shear viscosity of fluid phase ξ ; ks is the intrinsic permeability; and krξ is the relative per-
meability of fluid phase ξ . As noted previously, cross-coupling induced by viscous drag is conventionally neglected
in modeling two-phase fluid flows through unsaturated porous media, i.e., R12 = R21 = 0 [18, Chap. 5], [43].

The coefficients A11, A22, A12, and A21 describing the effect of inertial coupling are related to fluid properties
and pore structure by [13, 25]:

A11 = (1 − αs)ρ1θ1, A22 = (1 − αs)ρ2θ2, A12 = A21 = −0.1
√

α2
s ρ1ρ2θ1θ2, (A5.1, 2, 3)

where αs is a geometrical factor independent of solid or fluid densities to characterize how the structure of the porous
medium restricts the flow of fluid, commonly termed tortuosity [1, 44, 45]. In principle, αs can be determined by
acoustic or electrical measurements [46]; a theoretical value of αs = 1

2 (1 + 1
φ
) was given by Berryman [45] for a

fluid-containing porous medium whose solid grains are spherical. The cross-coupling coefficients A12 and A21 are
typically considered to be symmetric, i.e., A12 = A21 [13, 24, 25].

Appendix B: Relation of M1 to capillary pressure pc

By definition, capillary pressure is equal to the difference between the non-wetting and wetting fluid pressures:

pc = p1 − p2. (B1)

Thus, changes in capillary pressure can be written as

∂pc

∂t
= ∂p1

∂t
− ∂p2

∂t
. (B2)

Following Lo et al. [13], the balance equations of mass applied to the non-wetting and wetting fluids take the form:

∂p1

∂t
= − K1

S1

∂S1

∂t
− K1

φ

∂φ

∂t
− K1 �∇ · �v1, (B3.1)

∂p2

∂t
= − K2

(1 − S1)

∂(1 − S1)

∂t
− K2

φ

∂φ

∂t
− K2 �∇ · �v2, (B3.2)

where �vξ and Kξ denote the velocity vector and bulk modulus of fluid phase ξ , respectively. Substituting equations
(B3) to eliminate ∂p1

∂t and ∂p2
∂t in equation (B2), one obtains

∂pc

∂t
= ∂p1

∂t
− ∂p2

∂t
= − K1

S1

∂S1

∂t
− K1

φ

∂φ

∂t
− K1 �∇ · �v1 − K2

(1 − S1)

∂S1

∂t
+ K2

φ

∂φ

∂t
+ K2 �∇ · �v2

= −
[

K1

S1
+ K2

(1 − S1)

]
∂S1

∂t
− (K1 − K2)

φ

∂φ

∂t
− K1 �∇ · �v1 + K2 �∇ · �v2. (B4)

Under the isothermal conditional, the capillary pressure can be uniquely described by the function pc = pc(S1) if
the hysteresis effect is neglected. Thus, changes in relative saturation of the non-wetting fluid can be expressed as

∂S1

∂t
= dS1

dpc

∂pc

∂t
. (B5)

Combination of (B4) and (B5) leads to

∂pc

∂t
= (K1 − K2)

M1φ

∂φ

∂t
+ 1

M1
(K1 �∇ · �v1 − K2 �∇ · �v2). (B6)
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In the generalized Biot–Willis [42] unjacketed experiment for a two-fluid system, one of the physical constraints
imposed in the experiment is that porosity remains unchanged [13, 22]:

∂φ

∂t
= 0. (B7)

It follows that (B6) can be reduced to

∂pc

∂t
= K1

M1

�∇ · �v1 − K2

M1

�∇ · �v2. (B8)

After time integration, the linearized form of (B8) can be formulated as

pc = K1

M1

�∇ · �u1 − K2

M1

�∇ · �u2. (B9)

References

1. Johnson DL (1986) Recent developments in the acoustic properties of porous media. In: Sette D (ed) Proceedings of the international
school of physics Enrico Fermi Course XCIII, Frontiers in physical acoustics. North Holland, Amsterdam, pp 255–290

2. Finol A, Farouq Ali SM (1975) Numerical simulation of oil production with simultaneous ground subsidence. J Soc Petrol Eng
259:411–422

3. Kosloff D, Scott RF, Scranton M (1980) Finite element simulation of Wilmington oil field subsidence: I. linear modeling. Tectono-
phys 65:339–368. doi:10.1016/0040-1951(80)90082-7

4. Corapcioglu MY, Bear J (1983) A mathematical model for regional land subsidence due to pumping: 3 integrated equations for a
phreatic aquifers. Water Resour Res 19:895–908. doi:10.1029/WR019i004p00895

5. Beresnev IA, Johnson PA (1994) Elastic-wave stimulation of oil production: a review of methods and results. Geophysics
59(6):1000–1017. doi:10.1190/1.1443645

6. Spanos T, Davidson B, Dusseault M, Shand D, Samaroo M (2003) Pressure pulsing at the reservoir scale: a new IOR approach.
J Can Petrol Technol 42(2):16–28

7. Montgomery DR, Manga M (2003) Steamflow and water well response to earthquakes. Science 300:2047–2049. doi:10.1126/
science.1082980

8. Gambolati G, Teatini P, Baú D, Ferronato M (2000) Importance of poroelastic coupling in dynamically active aquifers of the Po
river basin, Italy. Water Resour Res 36(9):2443–2459. doi:10.1029/2000WR900127

9. Wang HF (2000) Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton University Press,
Princeton

10. Li X, Zhong L, Pyrak-Nolte LJ (2001) Physics of partially saturated porous media: residual saturation and seismic-wave propagation.
Annu Rev Earth Planet Sci 29:419–460. doi:10.1146/annurev.earth.29.1.419

11. Cosenza P, Ghoreychi M, de Marsily G, Vasseur G, Violette S (2002) Theoretical prediction of poroelastic properties of argillaceous
rocks from in situ specific storage coefficient. Water Resour Res 38(10):1207. doi:10.1029/2001WR001201

12. Coussy O (2004) Poromechanics. Wiley, Chichester
13. Lo WC, Sposito G, Majer E (2005) Wave propagation through elastic porous media containing two immiscible fluids. Water Resour

Res 41:W02025. doi:10.1029/2004WR003162
14. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164. doi:10.1063/1.1712886
15. Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid, I. Low-frequency range, II. Higher

frequency range. J Acoust Soc Am 28(2):168–191. doi:10.1121/1.1908239
16. Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33(4):1482–1498. doi:10.1063/

1.1728759
17. Drew DA, Passman SL (1999) Theory of multicomponent fluids. Springer-Verlag, New York
18. Dullien FLA (1992) Porous media: fluid transport and pore structure. Academic Press, San Diego
19. Brutsaert W (1964) The propagation of elastic waves in unconsolidated unsaturated granular mediums. J Geophys Res 69(2):243–

257. doi:10.1029/JZ069i002p00243
20. Brutsaert W, Luthin JM (1964) The velocity of sound in soils near the surface as a function of the moisture content. J Geophys Res

69(4):643–652. doi:10.1029/JZ069i004p00643
21. Garg SK, Nayfeh AH (1986) Compressional wave propagation in liquid and/or gas saturated elastic porous media. J Appl Phys

60(9):3045–3055. doi:10.1063/1.337760
22. Tuncay K, Corapcioglu MY (1997) Wave propagation in poroelastic media saturated by two fluids. J Appl Mech 64(2):313–320.

doi:10.1115/1.2787309
23. Wei C, Muraleetharan KK (2002) A continuum theory of porous media saturated by multiple immiscible fluids: I. Linear poroelas-

ticity. Int J Eng Sci 40:1807–1833. doi:10.1016/S0020-7225(02)00068-X

123

http://dx.doi.org/10.1016/0040-1951(80)90082-7
http://dx.doi.org/10.1029/WR019i004p00895
http://dx.doi.org/10.1190/1.1443645
http://dx.doi.org/10.1126/science.1082980
http://dx.doi.org/10.1126/science.1082980
http://dx.doi.org/10.1029/2000WR900127
http://dx.doi.org/10.1146/annurev.earth.29.1.419
http://dx.doi.org/10.1029/2001WR001201
http://dx.doi.org/10.1029/2004WR003162
http://dx.doi.org/10.1063/1.1712886
http://dx.doi.org/10.1121/1.1908239
http://dx.doi.org/10.1063/1.1728759
http://dx.doi.org/10.1063/1.1728759
http://dx.doi.org/10.1029/JZ069i002p00243
http://dx.doi.org/10.1029/JZ069i004p00643
http://dx.doi.org/10.1063/1.337760
http://dx.doi.org/10.1115/1.2787309
http://dx.doi.org/10.1016/S0020-7225(02)00068-X


Analytical decoupling of poroelasticity equations 235

24. Berryman JG, Thigpen L, Chin RCY (1988) Bulk elastic wave propagation in partially saturated porous solids. J Acoust Soc Am
84(1):360–373. doi:10.1121/1.396938

25. Santos JE, Corbero JM, Douglas J (1990) Static and dynamic behavior of a porous solid saturated by a two-phase fluid. J Acoust
Soc Am 87(4):1428–1438. doi:10.1121/1.399439

26. Dutta NC, Ode H (1979) Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation
(White model)—Part I: Biot theory. Geophysics 11:1777–1788. doi:10.1190/1.1440938

27. Berryman JG (1983) Dispersion of extensional waves in fluid-saturated porous cylinders at ultrasonic frequencies. J Acoust Soc
Am 74(6):1805–1812. doi:10.1121/1.390266

28. Chandler RN, Johnson DL (1981) The equivalence of quasistatic flow in fluid-saturated porous media and Biot’s slow wave in the
limit of zero frequency. J Appl Phys 52(5):3391–3395. doi:10.1063/1.329164

29. Lo WC, Sposito G, Majer E (2002) Immiscible two-phase fluid flows in deformable porous media. Adv Water Resour 25(8–
12):1105–1117

30. Lo WC, Sposito G, Majer E (2006) Low-frequency dilatational wave propagation through fully-saturated poroelastic media. Adv
Water Resour 29(3):408–416. doi:10.1016/j.advwatres.2005.05.012

31. Lo WC (2006) Decoupling of the coupled poroelastic equations for quasistatic flow in deformable porous media containing two
immiscible fluids. Adv Water Resour 29(12):1893–1900. doi:10.1016/j.advwatres.2006.01.002

32. Lo WC, Sposito G, Majer E (2007) Low-frequency dilatational wave propagation through unsaturated porous media containing
two immiscible fluids. Transp Porous Media 68:91–105. doi:10.1007/s11242-006-9059-2

33. de la Cruz V, Spanos TJT (1985) Seismic wave propagation in a porous medium. Geophysics 50:1556–1565. doi:10.1190/1.
1441846

34. Pride SR, Gangi AF, Morgan FD (1992) Deriving the equations of motion for porous isotropic media. J Acoust Soc Am 92(6):3278–
3290. doi:10.1121/1.404178

35. Maas C (1986) The use of matrix differential calculus in problems of multiple-aquifer flow. J Hydrol (Amst) 88:43–67.
doi:10.1016/0022-1694(86)90196-4

36. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am
J 44(5): 892–898

37. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–
522. doi:10.1029/WR012i003p00513

38. Das BM (1993) Principles of soil dynamics. PWS-Kent, Boston
39. Bishop AW (1959) The principle of effective stress. Teknisk Ukeblad 39:859–863
40. Bear J, Bachmat Y (1991) Introduction to modeling of transport phenomena in porous media. Kluwer, Netherlands
41. Whitaker S (1973) Transport equations for multiphase system. Chem Eng Sci 28(1):139–147. doi:10.1016/0009-2509(73)85094-8
42. Biot MA, Willis DG (1957) The elastic coefficients of the theory of consolidation. J Appl Mech 24:594–601
43. Gray WG (1983) General conservation equations for multi-phase systems: 4. Constitutive theory including phase change. Adv

Water Resour 6:130–140. doi:10.1016/0309-1708(83)90025-8
44. Stoll RD (1974) Acoustic waves in saturated sediments. In: Hampton L (ed) Physics of sound in marine sediments. Plenum, New

York, pp 19–39
45. Berryman JG (1980) Confirmation of Biot’s theory. Appl Phys Lett 37(4):382–384. doi:10.1063/1.91951
46. Johnson DL, Plona TJ, Scala C, Pasierb F, Kojima H (1982) Tortuosity and acoustic slow waves. Phys Rev Lett 49(25):1840–1844.

doi:10.1103/PhysRevLett.49.1840

123

http://dx.doi.org/10.1121/1.396938
http://dx.doi.org/10.1121/1.399439
http://dx.doi.org/10.1190/1.1440938
http://dx.doi.org/10.1121/1.390266
http://dx.doi.org/10.1063/1.329164
http://dx.doi.org/10.1016/j.advwatres.2005.05.012
http://dx.doi.org/10.1016/j.advwatres.2006.01.002
http://dx.doi.org/10.1007/s11242-006-9059-2
http://dx.doi.org/10.1190/1.1441846
http://dx.doi.org/10.1190/1.1441846
http://dx.doi.org/10.1121/1.404178
http://dx.doi.org/10.1016/0022-1694(86)90196-4
http://dx.doi.org/10.1029/WR012i003p00513
http://dx.doi.org/10.1016/0009-2509(73)85094-8
http://dx.doi.org/10.1016/0309-1708(83)90025-8
http://dx.doi.org/10.1063/1.91951
http://dx.doi.org/10.1103/PhysRevLett.49.1840

	Abstract
	Abstract
	1 Introduction
	2 Poroelasticity model equations
	3 Decoupling the model equations
	4 Numerical verification
	5 Alternative normal coordinates
	6 Reduction to the decoupled Biot model equations
	7 Conclusions
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


